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A set of 57 novel canopy metrics of potential value for snew modeling were created from airborne LiDAR
data. The metrics were meant to estimate size and relative location of gap openings around a point within
forested areas, allowing for measures of théispatialarrangement of surrounding canopy elements. These
new metrics were correlated with snowiintereeption measured in the field (8488 manually measured
snow interception points). The results were,further compared to the correlation values between effec-
tive interception and traditionally used forest parameters (CC and LAI). The correspondence between all
metrics was also analyzed in ordemto understand the potential cross correlation between each variable.
LAI (average R: 0.57) demonstrated low correlations when directly compared to snow interception and
Forest snow modeling further showed a large cross correlation with canopy closure (average R: 0.72). A new metric, ‘mean
Canopy metrics distance to canopy’ had the highest correlation (average R: 0.78) over all storm events to the effective
LAI interception. But in confrast to LAI, this metric did not show any cross correlation with canopy closure
Canopy closure (CC). Likewise, ‘total gap area;” an indirect measurement of apparent gap fraction (another new met-
ric), also showed a'high correlation to effective interception (average R: 0.72) without demonstrating a
significant cross correlation to CC or to mean distance to canopy. These findings suggest that modeling
forest snow,processeés'with both CC and LAI may not be the best option due to both the low correlation
of LAI as.wellias high cross correlation between these parameters. However, the pairing of mean dis-
tance to canopy and/or total gap area with canopy closure could give more robust estimations of snow
intefeeptionwithin heterogeneous terrain.
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1. Introduction

The hydrology of forests plays an important role in the global
water budget. Snowmelt.dominated watershed headwaters which
contain forests produce 60% of the global freshwater runoff (Chang,
2003). Forest canopy struettire greatly influences snow accumula-
tion and melt andscontrols water availability from forested areas.
Specifically, the surrounding forest structure can influence involved
physical precesses, creating much greater spatial snow pack het-
erogeneity compared to open areas. Snow interception, a major
driverof heterogeneous snow distribution, ranges from low to just

* Corresponding author at: WSL Institute for Snow and Avalanche Research SLF,
Fluelastrasse 11, CH-7260 Davos Dorf, Switzerland. Tel.: +41 81 4170 156;
fax: +41 81 4170 0110.
E-mail addresses: moeser@slf.ch (D. Moeser), felix.morsdorf@geo.uzh.ch
(F. Morsdorf), jonas@slf.ch (T. Jonas).

http://dx.doi.org/10.1016/j.agrformet.2015.04.013
0168-1923/© 2015 Elsevier B.V. All rights reserved.

over 60% of total annual snowfall (Montesi et al., 2003; Storck et al.,
2002).

The importance of snow interception within forest canopies
has not gone unnoticed within the hydrology community. There
is a growing body of work spanning 75 years which described
attempts to directly quantify and model forest snow intercep-
tion (Hedstrom and Pomeroy, 1998; Satterlund and Haupt, 1967;
Schmidtand Gluns, 1991; Varholaetal.,2010b). These studies high-
light the complex interplay between the physical under-canopy
energy and water balance processes and the overhead multidimen-
sional arrangement of forest canopy characteristics. Intercepted
snow on the forest canopy drives sublimation in forested areas
and like interception, sublimation is highly variable. Many stud-
ies have estimated sublimation from coniferous canopies to range
from 25 to 50% of the total annual snowfall in cold and dry cli-
mates typical of the northern boreal forests (Essery and Pomeroy,
2001; Essery et al., 2003; Hedstrom and Pomeroy, 1998; Lundberg
and Halldin, 2001). Interception in many cases represents water
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lost (due to sublimation) to not only local water balances, but to
larger-scale water budgets. Within the Northern Hemisphere it is
estimated that 20% of the seasonal snow cover is located within
forested areas and can account for 17% of total terrestrial water
storage during the winter season (Guntner et al., 2007; Rutter et al.,
2009).

Due to the recognized importance of forest snow processes
on the water budget, many snow models include a vegetative
canopy representation. The Snow Model Inter-comparison Project
(SnowMIP2) included 33 models with a canopy representation of
varying degrees of complexity (Essery et al., 2009; Rutter et al.,
2009). All of these models, which have directly integrated a snow
interception module, utilize either canopy closure (CC), leaf area
index (LAI) or a composite of the two to describe the canopy struc-
ture. However, the interplay between canopy characteristics such
as LAI and CC and snow interception also depends on where these
characteristics are situated in relation to the greater surrounding
forest architecture.

Canopy gaps have large impacts on the snow holding capacity
in many forested areas. These areas can show divergent snow accu-
mulation patterns as compared to the surrounding forest and can
house maximum snow accumulation even as compared to neigh-
boring open areas (Troendle and Meiman, 1986; Winkler et al.,
2005). The interfaces between the open and forested areas also
show the most heterogeneous snow accumulation and ablation
patterns within a forested area and can house both the maxima
and minima snow depths depending upon the position relative to
the surrounding forest (Golding and Swanson, 1986; Veatch et al.,
2009). In efforts to describe the relationship between openness and
surrounding canopy, some practitioners categorize gaps for open-
ing size as a function of the average surrounding tree size. In order to,
permit for more robust interception modeling at landscape scales,
the greater canopy topography as well as the spatial heterogeneity
of canopy structure needs to be accounted for within the models:
Despite this, interception modules continue to use only point based
predictors, most likely due to the intensive requisite time involved
in collecting canopy metrics over large areas.

Standard overhead canopy structure methods formeasurement
are prohibitively labor intensive and normally’reéquire> destruc-
tive sampling of the overstory. However, there'are many indirect
methods which include hemispherical photography, plant canopy
analyzers (LAI-2000), or a spherical densitometer and each have
particular strengths and weaknesses (Breda, 2003; Hyer and Goetz,
2004). Hemispherical photography«(HP),is.increasingly becoming a
standard method for canopy structure\characterization. However,
this technique can deliver adbroadurange of estimates dependent
upon the initial camera andyutilized program settings and allows
for derivations of only péint based CC, LAl and incoming shortwave
radiation on the forestfloor(Zhang et al., 2005). HP image acquisi-
tion and processing, like the other field methods, is also very time
consuminggthus/Jimiting the utility of accurately describing these
metrics for large areas.

Airborne laser scanning (ALS) data has been increasingly uti-
lized to"derive estimates of CC and LAI with good correlations and
istbecoming more readily available for large areas throughout the
world (Asfier et al.,2011; Fleck etal.,2012; Korhonen and Morsdorf,
20T4%Povell et al., 2003; Moeser et al., 2014; Morsdorf et al., 2006,
2Q04; Riafio et al., 2004; Solberg, 2010; Solberg et al., 2009). ALS
can also derive large scale features such as canopy openings within
forested areas and it is also possible to provide information on how
these open areas are positioned relative to the surrounding forest.

Since ALS can quickly characterize surfaces over large scales, it
can also be used for a variety of novel canopy metric estimates
of potential value for forest snow modeling. As outlined above,
such investigations represent a significant research gap with large
potential improvements within forest hydrology, which have just

begun to be investigated (Varhola et al.,, 2010a; Zhao et al., 2011).
While the aim is to find metrics specifically related to snow inter-
ception, itis possible that there could be overlap from these findings
into other disciplines such as forest ecology and biology, where
such metrics have not yet been fully investigated.

This analysis was done in order to better answer the follow-
ing questions: Should we be using LAl and CC as the primary
canopy descriptors within forest snow models? Are there,more
robust canopy descriptors which could be utilized? This workyhas
highlighted the utility behind the algorithm used for the calcu=
lation of new canopy metrics and tested their functionality. We
created 57 canopy metrics from ALS data of potential’value for
snow modeling. The variables were meant to estimate'size and
relative location of gap openings around a point within a forested
area, allowing for measures of the spatial arrangement of surround-
ing canopy elements. These new metrics‘Wwere directly correlated
snow interception measured in the field (8488 manually measured
snow interception points). Thesresults were further compared to
the correlation values between interception and the traditional
parameters (CC and LAI), as ‘well as incoming shortwave radia-
tion estimates. The correspondence between all metrics was also
analyzed in order to understand the potential cross correlation
between each parameter:

2. Methods
2.1. Field areas

Seven forested field areas were equipped for a multiyear study
in'theregion immediately surrounding Davos, Switzerland (Fig. 1).
The field areas were 50m x 50 m, and were chosen due to the
highly heterogeneous canopy coverages at the sub-plot scale along
with larger scale canopy characteristics such as open areas present
within the ‘medium’ and ‘low’ sites (Fig. 1). Forest stands were
predominately Norwegian spruce and varied in height from new
growth up to45 min height with the majority between 10 and 30 m.
Within each field area were 276 pre-labeled and surveyed points
with a maximum absolute positioning error of £50cm (derived
from 36 control measurements within each field area) for a total of
1932 locations for repeated ground measurements. Each sampling
grid was arranged in the same setup within all field areas (Fig. 1).
Two open field areas were further equipped as reference sites for
direct comparison to the under canopy snow measurements (refer
to Moeser et al., 2014 for a more detailed description).

2.2. Snow data collection

Snow depth data was collected after every snow storm event
(defined here as a total open area snowfall amount of 15cm
or greater) in the winter 2012 and 2013 season (15cm thresh-
old dictated by the IMIS-SLF meteorological station from the
intercantonal measurement and information system). These depth
measurements were collected at each forested point (1932 points)
as well as at 100 open area control points (total of 69,552 measure-
ments). Snow interception however was measured after only 9 of
these snowfall events (from a total of 27) due to the demanding
pre-conditions necessary for such a campaign: (1) forest canopy
100% snow free before a snow storm event, (2) a defined crust on
the underlying snow, and (3) minimal wind redistribution during
the storm period. When all of these pre-conditions were met, a
differential snow depth was measured immediately after snow-
fall, i.e., the new snow accumulated on top of the overlying crust.
From these pre-conditions, the measurements can be thought of as
1 - snow interception. After parsing all snow measurements and
removing all data potentially conflicting with the pre-conditions
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there were 8488 remaining interception measurement points avail-
able for comparison. Despite the initial data parsing and the pre
conditions, it is likely the data contains intra storm period unload-
ing events when the maximum interception capacity above a
measurement point is reached. Due to this, the interception mea-
surements refer to effective interception (or cumulative storm
interception). It is possible to attach an unloading estimate to these
measurements from the work of Hedstrom and Pomeroy (1998),
Pomeroy et al. (1998a,b); Pomeroy et al. (1998a,b) as well as Storck
et al. (2002). However, these unloading metrics involve just an ini-
tial multiplier (0.678 and 0.6, respectively) regardless of the time
step or overlying canopy, creating no change in the correlation
between the interception measurements and the proposed canopy
metrics. Furthermore, the only other unloading algorithms of which
the authors are aware use a temperature threshold of 0 at which
point the difference between the snow storage capacity of the tree
and the rain storage capacity of the tree is given as unloaded snow
(Koivusalo and Kokkonen, 2002). Since the temperature values are
well below freezing, this algorithm would not account for the snow
unloaded during the storms (Table 1).

All snow depth values were converted into snow water equiva-
lent (SWE) from the US Army Corps of Engineers (1956) where snow
density was related to the average storm temperature as follows:
Snow density = 67.92 + 51.25 e(7/2:59) (1)
where T is the average storm air temperature (°C). The air tem-
perature at each site, for each storm event, was interpolated
from individual linear models created for each storm event with
an average correlation coefficient of 0.92 and root mean square
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Table 1

Dates of snow sampling within the 2012/13 and 13/14 winter seasons. The snow
depth measurements represent the total snow storm depth which fell in the Laret
open field site. The swe and temperature, representing storm based values (swe —
total storm swe, and temp - average storm temperature °C), are modeled for the
Laret open field site. The wind speed is the average wind speed during each storm
event at the Davos Stilli Meteorological station at 1560 m situated just south of the
lake seen (and labeled) in Fig. 1.

Storm date Snow swe (mm) Temp (°C) Wind
depth (cm) speed (m/s)
13-January-2013 28.53 22.65 -3.9 0.27
22-February-2013 20.31 13.89 -12.1 0.55
6-March-2013 37.16 28.96 -4.2 0.56
20-March-2013 16.81 13.62 -35 049
27-March-2013 17.41 12.81 -5.7 058
15-January-2014 27.65 24.42 -24 1.71
28-January-2014 27.80 21.18 -4.7 0.26
17-February-2014  24.31 22.49 =19 1.38
24-March-2014 35.88 26.93 —54 2.33

error of 0.38 (Fig. 2). Each,temperature model utilized tempera-
ture data from 4 meteorological stations from the ‘Intercantonal
measurement and information‘system’ (IMIS) surrounding Davos,
Switzerland at four unique ‘elevation bands: 1560m, 2140m,
2290 m, 2540 m (IMIS-KLO; IMIS-SLF, IMIS-PAR, IMIS-WF]J).

Eq. (1) was _then,used to attach fresh snow density values to
all measuredy,snow,depth values at each storm to calculate SWE.
Finallygthe‘observed interception was derived from the difference
between'the freshly fallen SWE in the open and the freshly fallen
SWE in the forest.

77 [ ~-_Switzerland

Canopy Coverage
Field Area [Elevation| Low Med High Open
Laret 1546 v X v v
Drusatcha 1764 v v X X
Ischlag 1874 v v v v

Fig. 1. There were seven forested areas and two open field areas located in three elevation regimes around Davos in eastern Switzerland. Each field area was located in a
unique gap fraction regime and maintained heterogeneous canopy characteristics. The box plot on the right is a representation of the ALS cloud data within the Laret low
field area. The sampling grid with each point (276 points), represented as black dots along the internal grid, can be seen within the ALS cloud box plot. The other field areas
have the same experimental setup and the generalized canopy coverages and elevations for these areas can be seen in the lower right table.
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Fig. 2. Four meteorological stations surrounding Davos were used to create a linear temperature model unique to each time step to estimate temperature at each field
area. These temperatures were then used to estimate the density of thefreshlyfallen snow at each field area for each storm using the algorithm from the US Army Corps
of Engineers (1956). The confidence intervals for the density model utilize the.confidence bounds from the temperature models. Note that the confidence bands within the
density graph are minimal at low temperatures due to the exponentialinature of the density model showing that despite large spread in confidence for the temperature

during storm 3, this uncertainly was not transferred to the density model.

2.3. ALS data

2.3.1. Technical details

ALS data acquisition was carried out)from 11th to 15th of
September 2010 using a Riegl LMS*Q 560/sensor from a series of
helicopter flyovers at a nominal flying altitude of 700 m above the
ground for a total area of ~9Q km2xThe wavelength emitted from
the Riegl device was 1550mmywith pulse durations of 5 ns and up to
7 returns were detected per pulse using a maximum scan angle of
+15°. Morsdorf et al¢{2008)performed an experiment over similar
terrain withinsSimilar’conditions where it was showed that small
scan anglesido not significantly alter the measurements of canopy
gap fractionsyThe post processing of the full waveform data set
yielded an average echo density of 36 pulses per m? of the flyover
domaijn‘and 19 pulses per m? for the last returns (i.e., shot density)
withinthe utilized domain area. The affiliated digital terrain model
(DTM) orthe underlying ground surface elevations were computed
by using the classified ground returns at a 0.5 m horizontal resolu-
tion by Toposys using their in house processing software, TopPit
(http://www.toposys.com/).

2.3.2. CC, LAl and radiation flux derivation

Canopy closure, LAI (effective LAI) and incoming short-
wave radiation was estimated from the ALS data by creation
of synthetic hemispheric images at each ground point (1932
points) from conversion of the standard Cartesian X,Y,Z

coordinate system to a polar system to mimic the angular
viewpoint of a hemispherical photograph. These synthetic images
were processed as if they were normal hemispherical photographs
with ‘Hemisfer’, an image analysis software developed at the Swiss
Federal Institute for Forest, Snow and Landscape Research WSL
(http://www.wsl.ch/dienstleistungen/produkte/software/hemisfer/,
Thimonier et al., 2010). Despite the limited scan angle of the fly-
over, these estimates showed high correlations ranging from
R=0.83 for LAIL, R=0.93 for CC (when compared to hemispherical
photos) and R=0.90-09.4 for incoming solar radiation (when
compared to radiometer data) depending upon the site. Refer to
Moeser et al. (2014) for a detailed method description.

2.3.3. Canopy metric definition

In addition to the standard metrics (CC and LAI), new canopy
metrics were created at each ground point (1932 points). These
metrics were generated from a vector searching algorithm designed
to analyze ALS data for canopy characteristics which quantify the
dimensions of a canopy gap at various directions as well as total
gap size area. This section explains the basic functionality of the
algorithm and gives general definitions of the new canopy met-
rics. Section 2.3.4 gives a detailed explanation of how the algorithm
functioned.

The algorithm searched ALS data transformed into a 2 dimen-
sional tree height model at specific user defined locations (i.e., the
ground points). The data was scanned for the presence of canopy
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elements in 192 unique directions (every 1.9°) on the planar sur-
face from vectors originating at a predefined point. Each of the
192 directional vectors, with the origin at the user defined loca-
tion, traveled in unique and constant directions until a canopy
element was hit (end point). Each vector was then attached the
distance (in meters) between the user defined location and the clos-
est canopy feature which was in the directional path of the vector
(Fig. 3). All end points from the 192 vectors were connected and a
2-dimensional poly-shape was created (Fig. 4c). This was repeated
for all user defined locations. This poly-shape (total gap area) rep-
resented the size of the gap surrounding the user defined point(s)
in m2, or in other words the total open area around a point. The
mean length of each directional vector (mean distance to canopy)
in m, the max length of each vector (max distance to canopy), and
the minimum length of each vector around from the user defined
point (min distance to canopy) were also calculated which gave
generalized information about the fetch of a canopy gap from the
location perspective at the point in question, as well as the point(s)
location relative to the gap.

Vector pairs were used in further calculations and were defined
as the coupling of two opposing vectors (92 vector pairs). For exam-
ple, the vector traveling exactly west from a point would be paired
with the vector traveling exactly east. The mean length of the vec-
tor pairs were calculated (mean gap diameter) in m, along with
the maximum (maximum gap diameter) and minimum vector pair
lengths (minimum gap diameter) in order to provide basic infor-
mation about the shape of the gap around the point in question.

All of these metrics were additionally generated for unique
directional sectors, where the vector searching sectors were lim-
ited to 180 and 90° windows. The 180° windows included analyses
restricted to the cardinal directions, north, south, east and west.
The 90° windows included all quarter quadrants as well as the
cardinal directions: north, south, east, west, northeast, southeast,
southwest, and northwest. Refer to Table 2 for an overview of the

area: 978.8m?
. mdc:17.01m
smoothing factor: 0.8

12222 box cut for transect viewy °

O

0

Q

Fig. 3. Schematic of the searchingivectors (blue) movement within an empty
domain. Vectors begin andsfinish, due north and move in a clockwise rotation. Red
lines represent the breaks between the directional sectors. The underlying gridded
domain is seen in the background. The vectors reach the edge of the domain unless a
canopy element(represented as a dark circle) is first reached. (For interpretation of
the referencesto color in this figure legend, the reader is referred to the web version
of this article.)

caleulated metrics. To use total gap area as an example; total gap
area was calculated around the predefined points for the (1) entire
domain (360°), (2) to the north with a 180° search window, (3) to
the east with a 180° search window, (4) to the south with a 180°

canopy (n;]

786058

analysis point

canopy height (m)

smoothing factor: 0.9

Fig. 4. (a) LiDAR point cloud data around measurement point ‘C1’ within the ‘Laret low’ field area. (b) Shows the understory of LiDAR returns (zoom in of canopy returns
less than 5 m which were located within the box cut domain seen within each subsequent tile) with the analysis point at the established hth of 1.25 m. Please note lack of
structure seen within the understory as compared to the overstory in part a. (c) 2-d viewpoints of the same data from part a. These tile show the polygon’s created in green
from 3 different smoothing scenarios. The estimated gap area (area) and mean dist to canopy (mdc) can be seen within the insets of each. Column three of (c) shows the best
fit smoothing factor of 0.9. The black box within each plan view shows the exact dimensions of the transect view in part b. All utilize a starting box of 0.75m and a height

threshold of 1.25m.
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Table 2

Fifty-seven canopy metrics were created from the searching algorithm. Gap area and distance to canopy metrics were derived for the entire domain as well as for each
directional sector from a 90 and 180° search window. The gap diameter metrics and canopy height proxies were generated only for the entire domain. Values within

parentheses indicate number of times the descriptor was created.

Canopy descriptors The full domain (360°)

180° sector (N,S, E, W) 90° sector (N,S, E, W,NE, SE,SW, NW)

Total gap area (m?)

Max gap diameter (m)

Max distance to canopy (m)
Min gap diameter (m)

Min distance to canopy (m)
Mean gap diameter (m)

Mean distance to canopy (m)
Max canopy height proxy (m)
Mean canopy height proxy (m)

LA X

J (4%) (8%)
J(4x) /(8%
%) J(8%)
J4%) J(8%)

search window, (5) to the west with a 180° search window, (6) to
north with a 90° search window, (7) to the northeast with a 90°
search window, (8) to the east with a 90° search window, (9) to the
southeast with a 90° search window, (10) to the south with a 90°
search window, (11) to the southwest with a 90° search window,
(12) to the west with a 90° search window, and (13) to the north-
west with a 90° search window. The directional windows were also
used for the mean distance to canopy, maximum distance to canopy
and minimum distance to canopy metrics. The vector pair met-
rics (mean gap diameter, maximum gap diameter and minimum
gap diameter) were only generated for the entire domain (360°
window).

Finally, in addition to the directional searches, a secondary static
domain with a 10 m radius around each point was then used to
estimate general tree height proxies around the predefined points.
A maximum canopy height value (max canopy height proxy) was
calculated for each data trap as well as an average of all values
within each data trap (mean canopy height proxy) from the tree
height module. Table 2 outlines all calculated metrics.

2.3.4. Searching algorithm construction

The directional search for canopy elements surrounding a given
center location utilized the general procedure outlined in' the

Table 3

previous section. Specifically, an initial height thréshold (hth), a
starting bounding box where the vectors travel through despite
potential presence of canopy elements;anda basic smoothing func-
tion were integrated into the algorithm to cope with unwanted
scatter due to ungrouped understory«anopy returns (Fig. 4).

When a height threshold is'set, the algorithm ignores all canopy
elements which have heights less'than the pre-established value.
The height threshold was'set at 1.25 m in order to mimic settings
that were also used for the derivation of the ALS based CC, LAl and
incoming solar radiation (Voeser et al., 2014). Therefore the 192
vectors around the predefined point(s) only stop when a canopy
element greater than'the hth (1.25 m) within the direction path is
reached.

Thesmoothing function was introduced in order to reduce the
amount of‘noise effects of the ALS returns within the understory.
Refer, to Fig. 4 for a transect view of the understory surrounding
a point. The smoothing function was implemented by creating a
0.25 x 0.25 mraster of the ALS data cloud where the average return
value (transformed to canopy heights) was then assigned to each
grid cell. This grid was then binarized based on the hth: When the
gridded canopy returns were >hth (1.25 m), the grid cell value was
assigned 1 and when the return was <hth (1.25m), the grid cell
value was assigned 0. A moving 3 x 3 neighborhood cell mean filter

Overview of correlations of canopy metrics to interceptioniratiopWhere the mean represents correlations averaged over each storm event and stdev represents the standard
deviation of the correlations. All values under each header are organized from high to low correlation. No maximum or minimum distance to canopy estimations are shown
due to significantly lower correlations as compared to the;mean distance estimates. Gap area diameter estimates were also removed due to near identical correlations shared

with mean distance to canopy estimations.

Correlations to SWE interception at 9 storm events

Searching function - distance

Searching function - area

Mean stdev

Mean dist. to canopy 0.78 0.09
Mean dist. to canopy - north 180 0.74 0.10
Mean dist. to canopy - east 180° 0.74 0.09
Mean dist. to eanopy - south/180° 0.70 0.09
Mean dist. t0 canopy.=.east 90° 0.70 0.09
Mean dist. to cafopy - NE 90° 0.69 0.09
Mean dist. to canopy - west 180° 0.68 0.09
Mean dist. to canopy — north 90° 0.67 0.10
Mean dist. o canopy - SE 90° 0.64 0.09
Meandist. to canopy - NW. 90° 0.62 0.10
Mean,dist. to canopy - south 90° 0.62 0.08
Meandist. to canopy — west 90° 0.61 0.08
Mean dist. to canopy - SW 90¢ 0.60 0.07
Solar radiation

Mean daily DIF_IR" 0.74 0.12
Mean daily PISR 0.67 0.14
Mean daily DIRIR" 0.54 0.15

Mean stdev

Total gap area 0.72 0.11
Total gap area - east 180° 0.67 0.11
Total gap area - north 180° 0.64 0.11
Total gap area - south 180° 0.64 0.10
Total gap area - east 90° 0.60 0.10
Total gap area - NE 90° 0.59 0.09
Total gap area - west 180° 0.57 0.09
Total gap area - SE 90° 0.55 0.10
Total gap area - south 90° 0.52 0.09
Total gap area - north 90° 0.50 0.10
Total gap area - SW 90° 0.50 0.08
Total gap area - NW 90° 0.49 0.11
Total gap area - west 90° 0.48 0.08
Standard metrics

Mean canopy height 0.72 0.08
Canopy closure 0.72 0.13
LAI” 0.57 0.16

‘DIF.IR’ represents the diffuse under canopy component of the estimated incoming solar radiation, ‘DIR_IR’ represents the direct under canopy component of the estimated
incoming solar radiation and ‘PISR’ represents the potential incoming solar radiation or a composite of the direct and indirect component. While canopy closure maintains
significant correlations please note the low LAI value of 0.57 (range 0.21-0.77) which demonstrated a 21% reduction as compared to the best correlated factor, mean distance

to canopy (R: 0.78).
™ Represents variables created using synthetic images.
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was applied over the domain (200 m x 200 m domain around each
analysis point) where each element i, situated in the middle of the
neighborhood, was assigned the mean of the neighborhood.

The smoothing function was further parameterized by
a smoothing factor which represented a percentage of
canopy/percentage of total. The smoothing factor acted as
secondary threshold within the smoothed raster and values above
this threshold value were considered canopy and values below are
passed through by the search vectors. This value was optimized to
a value of 0.9 (the vector was stopped at a grid cell when at least
90% of the surrounding grid cells had canopy elements over the
hth) based on a visual comparison with the ALS data cloud (Fig. 4c).
From the use of this smoothing factor with the smoothed raster,
the vectors were able to bypass ungrouped understory canopy
returns, which allowed for the vectors to travel past canopy
returns which fell over the hth (1.25m) but demonstrated a low
surrounding density (Fig. 4b).

Finally, since the smoothing function was based on a grid-
ded approach, an initial starting bounding box was integrated. For
example, if the neighboring pixel to the north of the starting point
was classified as canopy, then entire 45° viewshed to the north
would have also been classified as canopy, since all vectors trav-
eling between the northwest and northeast directions would hit
this grid cell. Due to this, an initial starting distance of 0.75 m was
allocated to the searching vectors, which reduced the significance
of canopy hits close to the starting point affecting the neighboring
classifications.

2.3.5. Searching algorithm transferability

Since the vector searching algorithm works on ALS data con-
verted to a raster, high point cloud density data is not necessarily
needed to provide accurate metric derivation. This process has been
fully automated and initial settings including the height threshold,
the grid size of the raster (raster of ALS data cloud), smoothing
factor and initial starting bounding box as well as the predefined
location list (where the process was to be performed) were pro-
grammed as user defined presets. This flexibility allows for the use
of this algorithm within other data sets regardless of theinitial data
resolution.

2.4. Data analysis

In accordance with the snow measurement assumptions (Sec-
tion 2.2), snow interception (in mms«SWE) can then be thought
of as: SWE in the open (Popen) — SWE in the forest (SWEgypest). In
order to normalize the data over eachsstorm event, the ratio of
SWEcyrest/Popen Was used as adirecticomparison to the metrics from
the ALS data. This included all metrics seen within Table 2 as well as
the LAI, CC, and incoming Selatrradiation generated from synthetic
ALS images (Section,2.3.2). All metrics were individually correlated
to the interception data at€ach storm event and subsequently aver-
aged.

All forest metries were then inter-compared using correspon-
dence analysis (CA) in order to analyze cross-correlation between
the metrics. CA is a non-parametric principle component method
for analyzing correspondence or independence among variables.
The significance of each association was based upon the chi-
squared distance between each data point and the expected value,
where the expected value was equal to the value that has the
highest probability of occurring within the dataset (Car, 2002).
Eigenvectors (factors) associated with the Eigen decomposition of
the matrix of the chi-square values from the data set were plot-
ted on independent axes, along with the Eigen values for each
sample which allowed for a visual assessment of independence or
cross correlation. Each factor axes were also assigned a significance
value (percent of inertia) which represented an estimate of the

amount of variability captured within the dataset from the factor.
Independence was then analyzed by the plotted variable separa-
tion distance, with greater significance given to the separation on
the axes with a higher factor value (Greenacre and Blasius, 1994;
Lorenzo-Seva et al., 2009; Van de Velden and Kiers, 2003, 2005).

K means clustering was then used in order to automatically
choose groups of variables which have similar CA plotting charac-
teristics by maximizing the inter cluster distance and minimizing
the intra cluster distances (Seber, 1984; Spdth, 1985). Indepens
dence within CA is normally qualitatively analyzed from a/visual
analysis of variable separation. However, this unique method,pair-
ing (CA and K means clustering) allowed for an automated and
unbiased approach. The analysis was performed iteratively from a
random centroid selection of each potential cluster (el@ister groups
set to 4). The factor values from the CA weregalso integrated into
the K means clustering routine, where the partitioning of the intra
and inter clustering distances were fupther,based on the factor
value (refer to axis values in Fig./5)wEach factor value was given
a normalized percent weight based onthe additive of each plot-
ted dimension factor value (3 dimensions). These weights were
then applied to the coordinates of the‘input data. This allowed the
k means clustering routine‘to,favor relationships based upon the
amount of variance captured within each dimension (percent of
inertia).

3. Results and discussion

Table"3, gives an overview of correlations of canopy metrics to
interceptionyratio. All gap diameter metrics retained almost exact
correlations as the distance to canopy metrics. Due to this, the
gap diameter metrics have been removed from Table 3. This high-
lights the near identical predictive ability of these two metrics
and shows that mean gap diameter represents, regardless of the
quadrant, almost equivalent gap opening characteristics as mean
distance to canopy. Furthermore, all maximum and minimum esti-
mates (max/min distance to canopy, max/min gap diameter for the
entire domain as well as sectors) demonstrated significantly lower
correlations to the interception rate as compared to mean (mean
distance to canopy, mean gap diameter) or total gap area esti-
mates. Therefore all metrics quantifying maximum or minimum
length regardless of the quadrant have also been removed from
Table 3. This implies that even if there are large fetches within a
specific direction where there is no canopy, the influence to snow
interception is minimal. The descriptors which integrate all direc-
tions within a sector are better apt at interception estimation than
canopy metrics which hold true only for specific directions. How-
ever, estimations of such metrics (max/min distance to canopy,
max/min gap diameter) could prove important for other factors
within the energy balance valuable for forest snow modeling that
are not analyzed in this study such as radiation transfer.

The highest correlated metric was mean distance to canopy
and maintained this ranking (average R=0.78, standard devi-
ation=0.09) within each precipitation event (correlation
range = 0.58-0.89). Canopy closure had a slightly reduced average
correlation (—6%) at 0.72 and demonstrated a slightly higher
standard deviation with a correlation range between 0.43 and
0.87. LAI showed significantly lower correlations than the higher
correlated metrics, with an average R of 0.57, standard deviation
of 0.16 and a correlation range between 0.21 and 0.77. The best
correlated area metric was total gap area which shared an equiva-
lent average correlation with canopy closure at 0.72 and a slightly
reduced standard deviation of 0.11 (correlation range = 0.50-0.86).
These results imply that metrics which evaluate the overall
position of a point in space (mean distance to canopy), as well
as metrics which calculate larger scale features (total gap area),
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Fig. 5. Correspondence analysis with integrated k means clustering of metrics for 4 groupings. Each grouping is represented by:acolor, and within each grouping a box shows
the location of highest correlated metric within the grouping. The cross represents the location of the independentelement; snow interception ratio. The traditional canopy
descriptors, CC and LAI and the mean tree height proxy were plotted in the same grouping, showing a high degrée'of cross correlation between these descriptors. The second
largest grouping in light blue integrated only estimates of area. The third cluster included direct radiation estimates as well as area and distance estimates to the south. The
largest cluster (red) integrated all remaining distance estimators and included the highest correlated factor of the series, mean distance to canopy.

are equally important for interception estimation as the canopy
parameters which evaluate just overlying canopy density above
a point. An overview of the metric statistics can be seen in
Table 3.

The correspondence and k means analysis shown in Fig. 5 uti-
lized a compilation of all storm events. However, similar results
were also observed when the analysis was run on individual storm
events. The smallest cluster (n=3) retained canopy closure, leaf
area index and tree height proxies. The tight clustéring of these
parameters demonstrated a significant amount of ctoss-correlation
(dependence) between these metrics and implied thatregardless of
the metric, they represented identical parts of the totalinterception
variation. The strongest (highest correlation to,interception) mem-
ber of this grouping was tied at mean tree height and canopy closure
with the lowest correlated end member beingdeaf area index. This
implied that not only may LAI not be the hest predictor for inter-
ception, but regardless of which of these metrics are used, identical
parts of the total interception yariation are represented.

The second smallest cluster(n=10) integrated all total gap area
metrics (total gap area, gap area to the north 180°, gap area to
the northeast 90°, etc.) exeept those to a southerly direction, with
the strongest member beingtotal gap area. This demonstrates the
potential utility of a'canopy metric which represents a larger scale
feature such,as canepy and forest openings.

The next grouping (n=15) incorporated all distance to the south
estimates (mean‘distance to canopy - southeast 90°, etc southeast
90°, etc- south 180°, mean distance to canopy - southeast 90°, etc.),
area tothesouth estimates (mean gap area - south 180°, mean gap
area - southeast 90°, etc.), and all incoming solar radiation esti-
mates which incorporated the direct component (direct incoming
solar radiation - DIR_IR and average daily potential incoming solar
radiation - PISR). The strongest member was average daily poten-
tial incoming solar radiation (PISR). This does not necessary imply
that solar radiation is an important factor within interception mod-
eling, this does however highlight the interplay between canopy
openness and solar radiation, and shows that perhaps area mea-
surements to the south could be used as a solar radiation proxy
when no direct estimates are available for snow melt studies.

The largestigrouping (n =45) incorporated all distance estimates
(mean distance to canopy, mean distance to canopy — north 180°,
mean\distance to canopy - northeast 90°, etc.) except those with
a southern aspect as well as all diffuse incoming radiation esti-
mates (DIF_IR). The strongest end member in this grouping, mean
distance to canopy also had the highest overall correlations of all
analyzed metrics and maintained low variance for all storm events.
These correspondence results in tandem with the correlation anal-
ysis highlight that metrics which analyze the overall position of a
point within a gap relative to the canopy, are equally, if not more
important for interception modeling, than just a canopy coverage
assessment.

Finally, the metric correspondence analysis demonstrated that
no increased predictive power is available within this dataset if
LAI and CC are used simultaneously for snow interception esti-
mates. It further highlighted the weak direct correlation between
LAI and snow interception ratio. Several of the variables created
from the searching algorithm demonstrated significantly higher
correlations than LAI and showed distinct separation from the tra-
ditional metrics grouping (cluster 1). This implied that not only
could a variable such as a mean distance to canopy accurately be
used as an independent variable to model interception ratio but
also that a composite of these variables could create a more robust
model than the standard pairing of LAl and canopy closure. Current
interception models, either stand alone, or subsequently integrated
into snow melt models use this standard metric pairing. Therefore,
it seems likely that one or more of the new metrics could be inte-
grated into the interception model distributions for a more accurate
representation of the overall water balance within forested areas.

4. Conclusion

ALS has the potential to supplement not just interception mod-
eling techniques but also forest snow modeling in general. Within
the field areas surrounding Davos, Switzerland, the availability of
ALS data has allowed for the creation of novel canopy metrics
without the prohibitive time necessary to manually measure thou-
sands of points to describe the canopy over large areas. The vector
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searching algorithm is fully automated and could characterize
thousands of locations within the field areas (Section 2.1) in a
period of minutes. This, in conjunction with an extensive database
of manually measured snow interception over heterogeneous ter-
rain (~8500 manual measurement points) allowed us to create and
test the capabilities of new input metrics in relation to parameters
historically used for forest snow modeling (CC and LAI).

LAI demonstrated low correlations when directly compared
to snow interception ratio and further showed a large cross-
correlation with canopy closure. Mean distance to canopy had the
highest correlation over all storm events to the interception ratio.
But in contrast to LA, this variable did not show any cross correla-
tion with canopy closure (CC). Likewise, total gap area, an indirect
measurement of apparent gap fraction also showed a high cor-
relation to interception ratio without demonstrating a significant
cross-correlation to CC or to mean distance to canopy.

These findings suggest that modeling forest snow processes
with both CCand LAl may not be the best option due to both the low
correlation of LAI as well as high cross-correlation between these
variables. However, the pairing of mean distance to canopy and/or
total gap area with canopy closure could give more robust estima-
tions of snow interception within heterogeneous terrain. Together,
these variables have the ability to quantify not just canopy den-
sity but canopy metrics relative to larger scale canopy structural
features such as canopy openings.

In order to permit for more robust modeling at scales greater
than the point scale, the greater canopy topography needs to be
accounted for. The inclusion of metrics which describe point based
canopy topography (canopy closure) with those which give infor-
mation regarding where these metrics reside in relation to the
larger encompassing features such as total gap area or mean dis-
tance to canopy could allow for better upscaling of snow forest
models to the landscape scale.

All programming was performed using Matlab. All scripts
related to this algorithm are freely available upon request.
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